(1)∵tanα=-[1/3],
∴原式=[tanα−2/3tanα+4]=
−
1
3−2
−1+4=-[9/7];
(2)证明:左边=[−2sinθcosθ−1
cos2θ−sin2θ=-
(sinθ+cosθ)2
(cosθ+sinθ)(cosθ−sinθ)=
sinθ+cosθ/sinθ−cosθ],
右边=[−tanθ−1/−tanθ+1]=[tanθ+1/tanθ−1]=[sinθ+cosθ/sinθ−cosθ],
∴左边=右边,
∴原等式成立.
(1)∵tanα=-[1/3],
∴原式=[tanα−2/3tanα+4]=
−
1
3−2
−1+4=-[9/7];
(2)证明:左边=[−2sinθcosθ−1
cos2θ−sin2θ=-
(sinθ+cosθ)2
(cosθ+sinθ)(cosθ−sinθ)=
sinθ+cosθ/sinθ−cosθ],
右边=[−tanθ−1/−tanθ+1]=[tanθ+1/tanθ−1]=[sinθ+cosθ/sinθ−cosθ],
∴左边=右边,
∴原等式成立.