(1)证明:设AC和BD交于点O,连PO,由P,O分别是DD1,BD的中点,故PO∥BD1,
∵PO⊂平面PAC,BD1⊄平面PAC,所以,直线BD1∥平面PAC.
(2)长方体ABCD-A1B1C1D1中,AB=AD=1,底面ABCD是正方形,则AC⊥BD,又DD1⊥面ABCD,则DD1⊥AC.
∵BD⊂平面BDD1B1,D1D⊂平面BDD1B1,BD∩D1D=D,∴AC⊥面BDD1B1.∵AC⊂平面PAC,∴平面PAC⊥平面BDD1B1 .
(3)由(2)已证:AC⊥面BDD1B1,∴CP在平面BDD1B1内的射影为OP,∴∠CPO是CP与平面BDD1B1所成的角.
依题意得CP=
CD2+DP2=
2,CO=
1
2AC=
2
2,在Rt△CPO中,CO=
1
2CP,∴∠CPO=30°
∴CP与平面BDD1B1所成的角为30°.