条件不足,应增加条件x>0,y>0,z>0
证明:
∵x>0,y>0,z>0
∴xyz>0
∴左边=(x²+y²+z²)/(xyz)
=2(x²+y²+z²)/(2xyz)
=[(x²+y²)+(x²+z²)+(y²+z²)]/(2xyz)
≥(2xy+2xz+2yz)/(2xyz)
=1/x+1/y+1/z
=右边
证毕
条件不足,应增加条件x>0,y>0,z>0
证明:
∵x>0,y>0,z>0
∴xyz>0
∴左边=(x²+y²+z²)/(xyz)
=2(x²+y²+z²)/(2xyz)
=[(x²+y²)+(x²+z²)+(y²+z²)]/(2xyz)
≥(2xy+2xz+2yz)/(2xyz)
=1/x+1/y+1/z
=右边
证毕