解题思路:根据矩形的性质得DC=AB=10,AD=BC=8,∠A=∠B=90°,再根据折叠的性质得CF=CD=10,∠CEF=∠DEC,ED=EF;在Rt△BFC中利用勾股定理计算出BF=6,
则AF=4,设DE=x,则AE=8-x,EF=x,然后在Rt△AEF中利用勾股定理得到关于x的方程,解方程得到x的值,接着再利用勾股定理计算出CE,再根据余弦的定义求解.
∵四边形ABCD为矩形,
∴DC=AB=10,AD=BC=8,∠A=∠B=90°,
∵沿CE将△CDE对折,点D正好落在AB边上的点F处,
∴CF=CD=10,∠CEF=∠DEC,ED=EF,
在Rt△BFC中,BC=8,CF=10,
∴BF=
CF2-BC2=6,
∴AF=AB-BF=4,
设DE=x,则AE=8-x,EF=x,
在Rt△AEF中,AE2+AF2=EF2,即(8-x)2+42=x2,解得x=5,
在Rt△DEC中,DE=5,DC=10,
∴EC=
DE2+DC2=5
5,
∴cos∠DEC=[DE/EC]=
5
5
5=
5
5,
即cos∠CEF=[DE/EC]=
5
5
5=
5
5.
故答案为
5
5.
点评:
本题考点: 翻折变换(折叠问题).
考点点评: 本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理和余弦的定义.