由Tan^2a=2tan^2b+1可知:
sin^2a/cos^2a=2*sin^2b/cos^2b+2-1
即:
sin^2a/cos^2a+1=2*sin^2b/cos^2b+2
即:
1/cos^2a=2/cos^2b
即:
cos^2b=2*cos^2a
所以,cos2a+sin^2b=2*cos^2a-1+sin^2b=cos^2b-1+sin^2b=0
由Tan^2a=2tan^2b+1可知:
sin^2a/cos^2a=2*sin^2b/cos^2b+2-1
即:
sin^2a/cos^2a+1=2*sin^2b/cos^2b+2
即:
1/cos^2a=2/cos^2b
即:
cos^2b=2*cos^2a
所以,cos2a+sin^2b=2*cos^2a-1+sin^2b=cos^2b-1+sin^2b=0