答:
f(x)=ax³+bx²+cx在[0,1]上是增函数,
在(-∞,0),(1,+∞)上是减函数
则x=0和x=1是导函数f'(x)的零点:
f'(x)=3ax²+2bx+c
根据韦达定理有:
x1+x2=-2b/(3a)=1
x1*x2=c/(3a)=0
所以:c=0,b=-3a/2
f'(x)=3ax²-3ax
f'(1/2)=3a/4-3a/2=3/2
解得:a=-2,b=3,c=0
所以:f(x)=-2x³+3x²
2)
0=1或者x
答:
f(x)=ax³+bx²+cx在[0,1]上是增函数,
在(-∞,0),(1,+∞)上是减函数
则x=0和x=1是导函数f'(x)的零点:
f'(x)=3ax²+2bx+c
根据韦达定理有:
x1+x2=-2b/(3a)=1
x1*x2=c/(3a)=0
所以:c=0,b=-3a/2
f'(x)=3ax²-3ax
f'(1/2)=3a/4-3a/2=3/2
解得:a=-2,b=3,c=0
所以:f(x)=-2x³+3x²
2)
0=1或者x