a²=45
b²=20
c²=25
F1F2=2c=10
设为P
PF1+PF2=2a=6√5
PF1=m,PF2=n
则(m+n)²=(2a)²
m²+n²+2mn=180
勾股定理
m²+n²=F1F2²=100
所以mn=(180-100)/2=40
所以PF1F2面积=mn/2=20
F1F2=10
所以三角形斜边的高是4
即P纵坐标是±4
所以有四个(±3,±4)
a²=45
b²=20
c²=25
F1F2=2c=10
设为P
PF1+PF2=2a=6√5
PF1=m,PF2=n
则(m+n)²=(2a)²
m²+n²+2mn=180
勾股定理
m²+n²=F1F2²=100
所以mn=(180-100)/2=40
所以PF1F2面积=mn/2=20
F1F2=10
所以三角形斜边的高是4
即P纵坐标是±4
所以有四个(±3,±4)