解题思路:(1)首先选定两个不同的球,看作一个球,选法有C52种,再把“空”当作一个球,共计5个“球”,投入5个盒子中,有A55种投放法
(2)没有一个盒子空着,相当于5个元素排列在5个位置上,有A55种,而球的编号与盒子编号 全相同只有1种.减去即可.
(3)先求不合要求的放法:恰有一球相同的放法,五个球的编号与盒子编号全不同的放法.
首先选定两个不同的球,看作一个球,选法有C52=10种,
再把“空”当作一个球,共计5个“球”,投入5个盒子中,有A55=120种投放法.
∴共计10×120=1200种方法
(2)没有一个盒子空着,相当于5个元素排列在5个位置上,有A55种,而球的编号与盒子编号全相同只有1种,所以没有一个盒子空着,但球的编号与盒子编号不全相同的投法有A55-1=119种.
(3)不满足条件的情形:第一类,恰有一球相同的放法:C51×9=45,
第二类,五个球的编号与盒子编号全不同的放法:5!(
1
2!−
1
3!+
1
4!−
1
5!)=44
∴满足条件的放法数为:
A55-45-44=31(种).
点评:
本题考点: 排列、组合及简单计数问题.
考点点评: 本题(1)解题的关键是把两个球先看成一个球,把没要球的地方也堪称一个球,再排列得到结果,(2)(3)用间接法求解便捷.