AE=FG
用勾股定理证.
连结AC,把AC与BD的交点记为O.
设边长BC=M,BF=N.
则有 EG=FC=M-N,EF=BF=N
BO=(√2/2)M,BE=(√2)N,EO=(√2/2)M - (√2)N =(√2/2)*(M-2N)
AO=(√2/2)M
因为AO⊥BD,FE⊥EG,所以有
AE^2 = AO^2 + EO^2 = (1/2)M^2 + (1/2)(M-2N)^2 = M^2 -2MN + 2N^2
FG^2 = EF^2 + EG^2 = N^2 + (M-N)^2 = M^2 -2MN + 2N^2
所以 AE^2 = FG^2
所以 AE = FG