数列an是等比数列,Sn为前n项和(1)若S4,S10,S7成等比数列,证a1,a7,a4也成等比数

1个回答

  • 设an=aq^(n-1)

    sn=a(1-q^n)/(1-q)

    1.

    s4=a(1-q^4)/(1-q)

    s10=a(1-q^10)/(1-q)

    s7=a(1-q^7)/(1-q)

    s4*s10=(s7)^2

    [a(1-q^4)/(1-q)][a(1-q^10)/(1-q)]=[a(1-q^7)/(1-q)]^2

    (1-q^4)(1-q^10)=(1-q^7)^2

    1-q^4-q^10+q^14=1-2q^7+q^14

    q^4+q^10=2q^7

    1+q^6=2q^3

    a+aq^6=2aq^3

    a1+a7=2a4

    所以a1,a7,a4也成等比数,证毕.

    2. 设S3=3/2,S6=21/16,bn=X*an-n*n若{bn}数列是单调递减数列,求实数X的取值范

    3/2=S3=a(1-q^3)/(1-q)

    21/16=S6=a(1-q^6)/(1-q)

    后式除以前式:

    (1-q^6)/(1-q^3)=(21/16)/(3/2)

    1+q^3=7/8

    q^3=-1/8

    q=-1/2

    代入上式可得a=2

    所以an=2(-1/2)^(n-1)=-(-1/2)^(n-2)

    bn=X*an-n*n

    =-x(-1/2)^(n-2)-n^2

    b(n-1)=-x(-1/2)^(n-3)-(n-1)^2

    bn-b(n-1)=[-x(-1/2)^(n-2)-n^2]-[-x(-1/2)^(n-3)-(n-1)^2]

    =-x(-1/2)^(n-2)-n^2-2x(-1/2)^(n-2)+(n-1)^2

    =-x3(-1/2)^(n-2)-2n+1

    <0

    x3(-1/2)^(n-2)+2n-1>0

    当n为偶数时,不妨设n=2k

    x3(-1/2)^(2k-2)+4k-1>0

    x3(1/2)^(2k-2)+4k-1>0

    x>(1-4k)/[3(1/2)^(2k-2)]

    =(1-4k)2^(2k-2)/3

    >(1-4*1)2^(2*1-2)/3

    =-1

    当n为奇数时,不妨设n=2m+1

    x3(-1/2)^(2m-1)+4m+1>0

    -x3(1/2)^(2m-1)+4m+1>0

    x<(1+4m)/[3(1/2)^(2m-1)]

    =(1+4m)2^(2m-1)/3

    <(1+4*1)2^(2*1-1)/3

    =10/3

    所以-1<x<10/3