1.用数学归纳法证明:
1)当n=3时,S3=3(a1+a3)/2
得a1-2a2+a3=0,命题成立;(想一想,为什么初值定为x=3?)
2)假设当n=k时,命题成立,即a1,a2,...,ak是等差数列
设ak=pk+q,则Sk=p/2*k(k+1)+qk=p/2*k^2+(p/2+q)k
则当n=k+1时,
S(k+1)=(k+1)(a1+a(k+1))/2=Sk+a(k+1)
即a(k+1)=[2Sk-(k+1)a1]/(k-1)=[pk^2+(p+2q)k-(k+1)(p+q)]/(k-1)=[pk^2+qk-(p+q)]/(k-1)
=[p(k+1)(k-1)+q(k-1)]/(k-1)=p(k+1)+q
所以a1,a2,...,a(k+1)也是等差数列
2.没看懂题目,修改一下吧