∫[0,1] (x^2-1)^n dx
=∫[0,1] (x-1)^n (x+1)^n d(x-1)
=1/(n+1) * ∫[0,1] (x+1)^n d(x-1)^(n+1)
=n/(n+1) * ∫[0,1] (x+1)^(n-1) (x-1)^(n+1) dx
=n(n-1)/(n+1)(n+2) * ∫[0,1] (x+1)^(n-2) (x-1)^(n+2) dx
=...
=n!* n!/(2n)!* ∫[0,1] (x-1)^(2n) dx
=n!* n!/(2n+1)!
∫[0,1] (x^2-1)^n dx
=∫[0,1] (x-1)^n (x+1)^n d(x-1)
=1/(n+1) * ∫[0,1] (x+1)^n d(x-1)^(n+1)
=n/(n+1) * ∫[0,1] (x+1)^(n-1) (x-1)^(n+1) dx
=n(n-1)/(n+1)(n+2) * ∫[0,1] (x+1)^(n-2) (x-1)^(n+2) dx
=...
=n!* n!/(2n)!* ∫[0,1] (x-1)^(2n) dx
=n!* n!/(2n+1)!