已知椭圆C;x2/a2+y2/b2=1(a>b>0)的右焦点为F(1,0),且点(-1,根号2/2)在椭圆上,

1个回答

  • 由题意知a^2-b^2=1 ,将点(-1,√2/2)代入椭圆方程得1/a^2+1/2b^2=1

    解得,椭圆方程为 x^2/2+y^2=1

    设点A(x1,y1),B(x2,y2),则QA=(x1-5/4,y1),QB=(x2-5/4,y2)

    (1)若直线l斜率为零,点A,B分别为 (-√2,0)(√2,0)

    此时向量之积为-7/16

    (2)若直线斜率不为0,则设直线方程为x=ky+1

    与椭圆方程联立,得,(k^2+2)y^2+2ky-1=0

    则有y1+y2=-2k/(k^2+2) y1·y2=-1/(k^2+2)

    则x1+x2=k(y1+y2)+2 x1·x2=k^2y1·y2+k(y1+y2)+1

    则有,QA·QB=(k^2+1)y1·y2-k/4(y1+y2)+1/16

    =-(k^2+1)/(k^2+2)+k/4·2k/(k^2+2)+1/16

    =-7/16

    综上所述,两向量之积为定值,-7/16