求微分
①y=(1+lnx)/(1-lnx)
y’=[(1-lnx)/x+(1+lnx)/x]/(1-lnx)²
=2/[x(1-lnx)²]
②y=1/2ln[(1+x)/(1-x)]-arctanx
y’=1/2[(1+x)/(1-x)]’/[(1+x)/(1-x)]-1/(1+x²)
=[1/(1-x)²]/[(1+x)/(1-x)]-1/(1+x²)
=1/(1-x²)-1/(1+x²)
证明恒等式:arcsinx+arccosx=π/2(-1≤x≤1)
1=x²+(1-x²)
=x²+√(1-x²)√(1-x²)
=sinarcsinx cosarccosx+√(1-sin²arcsinx)√(1-cos²arccosx)
=sinarcsinx cosarccosx+cosarcsinxsinarccosx
=sin(arcsinx+arccosx)
arcsinx+arccosx=π/2