证明:tan3/2X-tan1/2x=2sinx/(cosx+cos2x).我会证明,只是我只能找到一种解法,哪位哥哥姐

1个回答

  • 证明:tan(3/2)X-tan(1/2)x=2sinx/(cosx+cos2x).

    证明一:左边={sin[(3/2)x]/cos(3/2)x}-{sin[(1/2)x]/cos(1/2)x}

    ={sin[(3/2)xcos(1/2)x-cos[(3/2)x]sin(1/2)x}/[cos(3x/2)cos(x/2)

    =[sin(3x/2-x/2)]/{(1/2)[cos(3x/2+x/2)+cos(3x/2-x/2)]}

    =2(sinx)/(cos2x+cosx)=右边

    证明二:右边=[sin(3x/2-x/2)]/{(1/2)[cos(3x/2+x/2)+cos(3x/2-x/2)]}

    ={sin[(3/2)xcos(1/2)x-cos[(3/2)x]sin(1/2)x}/[cos(3x/2)cos(x/2)

    ={sin[(3/2)x]/cos(3/2)x}-{sin[(1/2)x]/cos(1/2)x}

    =tan(3x/2)-tan(x/2)=左边.