辅助线:过O作AB的平行线,交AB于G,交AC于H
△EBC∽△EOH,BE/OE=OH/BC
△DCB∽△DOG,CD/OD=OG/BC
因为OH=OG
所以BE/OE=CD/OD,即(OE+OB)/OE=(OD+OC)/OD
所以OB/OE=OC/OD
因为∠DOE=∠BOC
所以△DOE∽△COB
所以∠ODE=∠OCB
所以DE∥BC
辅助线:过O作AB的平行线,交AB于G,交AC于H
△EBC∽△EOH,BE/OE=OH/BC
△DCB∽△DOG,CD/OD=OG/BC
因为OH=OG
所以BE/OE=CD/OD,即(OE+OB)/OE=(OD+OC)/OD
所以OB/OE=OC/OD
因为∠DOE=∠BOC
所以△DOE∽△COB
所以∠ODE=∠OCB
所以DE∥BC