联立方程组:
{x^2+y^2+x-6y+m=0
{x+2y-3=0
消去x,整理得:
5y^2-20y+12+m=0
设P(x1,y1),Q(x2,y2)
则y1+y2=4,y1y2=(12+m)/5
由OP⊥OQ,得x1x2+y1y2=0
而x1=3-2y1,x2=3-2y2
∴(3-2y1)(3-2y2)+y1y2=0
即9-6(y1+y2)+4y1y2+y1y2=0
9-24+12+m=0
m=3
此时Δ>0,符合题意
故圆x^2+y^2+x-6y+3=0,即(x+1/2)^2+(y-3)^2=25/4
圆心(-1/2,3),半径5/2.