tanB=cos(C-B)/〔sinA+sin(C-B)〕=cos(C-B)/〔sin(B+C)+sin(C-B)〕
===>tanB=(cosBcosC+sinBsinC)/(2sinCcosB)
===>2sinBsinC=cosBcosC+sinBsinC
===>cosBcosC-sinBsinC=0
===>cos(B+C)=0===>B+C=90º
∴△ABC是直角三角形
tanB=cos(C-B)/〔sinA+sin(C-B)〕=cos(C-B)/〔sin(B+C)+sin(C-B)〕
===>tanB=(cosBcosC+sinBsinC)/(2sinCcosB)
===>2sinBsinC=cosBcosC+sinBsinC
===>cosBcosC-sinBsinC=0
===>cos(B+C)=0===>B+C=90º
∴△ABC是直角三角形