如图,AB是半圆O的直径,OB是半圆C的直径,半圆O的弦AE切半圆C于F,若AE=8,求三角形BCE的面积

2个回答

  • 连接CF,则CF⊥AE

    ∵BE⊥AE

    ∴CF∥BE

    ∴AF/AE = CF/BE = AC/AB

    设OC = r,则AB = 4r

    ∵AE = 8

    ∴AF = 6,EF = 2

    △ACF勾股定理得

    AC² - CF² = AF²

    即(3r)² - r² = 6²

    ∴r = 3√2/2,即CF = 3√2/2

    ∴BE = 2√2

    S△BCE = S△ABE - S△ACE

    = 1/2(AExBE - AExCF)

    = 1/2AE(BE - CF)

    = 1/2x8x(2√2 - 3√2/2)

    = 2√2