f(1+1)=f(2)=f(1)f(1)=4
所以第一题 因为f(2)=4
所以f(3x-x^2)>f(2)
又因为f(x+y)=f(x)*f(y),
f(x)=f(x+y)/f(y),
f(x-y)=f(x)/f(y),
设x>y f(x)/f(y)=f(x>0)>1
函数递增
所以3x-x^2-2>0
得1
f(1+1)=f(2)=f(1)f(1)=4
所以第一题 因为f(2)=4
所以f(3x-x^2)>f(2)
又因为f(x+y)=f(x)*f(y),
f(x)=f(x+y)/f(y),
f(x-y)=f(x)/f(y),
设x>y f(x)/f(y)=f(x>0)>1
函数递增
所以3x-x^2-2>0
得1