1.这是一元二次方程根的分布问题
方法:一看判别式,二看对称轴,三看区间端点函数值的正负
判别式(2k-1)^2 - 4k^2>0
对称轴 -(2k-1)/2>1
f(1)>0
∴k<-2
2.按要求把非p和非q求出来,一步一步操作就行,最后可以画个坐标轴看一下
p:-2≤2/3 -x≤2
-4/3≤x≤8/3
非p:x<-4/3或x>8/3
非q:x平方-2x+1-m平方>0
[x-(1+m)][x-(1-m)]>0
因为m>0所以1+m>1-m
所以非q:x<1-m或x>1+m
1-m≥-4/3且1+m≤8/3
∴0<m≤5/3
答案补充:第一问其实可以用维达定理,但中间有很多注意点,容易错.所以还是最好用我说的正统方法
第二问我写的是对的,你答案错了(不要迷信答案)
非q就是对q的否定,将≥改成<就行