已知α是第二象限角,且sinα=1/4,求sin(α+π/4)/sin2α+cos2α+1的值.

1个回答

  • α是第二象限角,sinα=1/4

    cosα=-根号(1-sin^2α)=-根号(1-1/16)=-根号17/4

    sin(α+π/4)=sinαcosπ/4+cosαsinπ/4=根号2/2(1/4-根号17)/4=-根号2(根号17 -1) /8

    sin2α=2sinαcosα=2*1/4*(-根号17/4) = -根号17 /8

    cos2α=1-2sin^2α=1-2*1/16=7/8

    sin(α+π/4)/(sin2α+cos2α+1)

    =[ -根号2(根号17 -1) /8 ] / [ -根号17 /8 + 7/8 +1]

    =[ -根号2(根号17 -1) ] / [ -根号17 + 7 +8]

    =[ -根号2(根号17 -1) ] / [15 -根号17 ]

    =[ -根号2(根号17 -1) (15 -根号17)] / [15^2 -17 ]

    =[ -根号2(16根号17 -32)] / 208

    =[ -根号2(根号17 -2)] / 13

    = (2根号2-根号34) / 13