1.由题可知:cn+1-p*cn=(2-p)*2^n+(3-p)*3^n
它又是等比数列,所以:
[(2-p)*2^(n+1)+(3-p)*3^(n+1)]/[(2-p)*2^n+(3-p)*3^n]=[(2-p)*2^n+(3-p)*3^n]/[(2-p)*2^(n-1)+(3-p)*3^(n-1)]
化简得:(2-p)*(3-p)*6^n=0
那么:(2-p)*(3-p)=0
解得:p=2 或 p=3
2.好像09年江苏高考题14.
An中有连续四项{-54,-24,18,36,81}是可以组成等比数列.
因为2个负数,3个正数,所以q