令an=n(n+1)=n²+n
∴1×2+2×3+3×4+...+2011×2012
=1²+1+2²+2+3²+3+……+2011²+2011
=﹙1²+2²+3²+……+2011²﹚+﹙1+2+3+……+2011﹚
=2011*2012*4023÷6+2011*2012/2
1/(2011x2012)x(1x2+2x3+3x4+……+2011x2012)
=1/(2011x2012)x[(1²+2²+3²+……+2011²)+(1+2+3+……+2011)]
=1/2011x2012x[2011x(2011+1)(2x2011+1)/6+2011x(1+2011)/2]
=1/2012x(2012x4023/6+2012/2)
=4023/6+1/2
=1341/2+1/2
=671
另一种方法:很明显,这里面最复杂的就是1×2+2×3+3×4+……+2011×2012
首先告诉你,1×2+2×3+3×4+……+n(n+1)=1/3×n(n+1)(n+2)
故括号内为1/3×2011×2012×2013
与前面的相乘就是1/3×2013=671
满意请采纳.