解析:
f(x)=sinx-cosx+x+1
则f'(x)=cosx+sinx+1
=√2(√2/2cosx+√2/2sinx)+1
=√2(sinπ/4cosx+cosπ/4sinx)+1
=√2sin(x+π/4)+1.
令0<x+π/4<π/2且3π/2<x<2π
得-π/4<x<π/4且5π/4<x<7π/4
所以函数f(x)的单调增区间为(-π/4,π/4)∪(5π/4,7π/4)
令π/2<x+π/4<3π/2
得π/4<x<5π/4
所以函数f(x)的单调减区间为(π/4,5π/4)
所以函数f(x)的极大值为f(π/4)=√2+1
极小值为f(5π/4)=1-√2.