【参考答案】
(1)因为,x∈[0,π/2],
2x+π/6∈[π/6,7π/6],
sin(2x+π/6)∈[-1/2,1],
又 a>0,所以:
-2a+2a+b=-5
a+2a+b=1
解得a=2,b=-5
(2)f(x)=-4sin(2x +π/6)-1
解不等式 2kπ -π/2≤2x+ π/6≤2kπ +π/2
2kπ -(2π/3)≤2x≤2kπ+ (π/3)
即 kπ- π/3≤x≤kπ+ π/6
这就是函数的递减区间.
再解不等式 2kπ +π/2≤2x+ π/6≤2kπ +3π/2
解得 kπ +π/6≤x≤kπ +2π/3
此及函数的递增区间.
不理解欢迎追问.