m=1/(1+√2)+1/(√2+√3)+1/(√3+√4)+...+1/(√2011+2012)
=(-1+√2)+(-√2+√3)+……+(-√2011+√2012)
=-1+√2012
n=1-2+3-4+5-6+..+2011-2012
=(1-2)+(3-4)+(5-6)+..+(2011-2012)
=(-1)*1006=-1006
所以n/(m+1)^2=-1006/2012=-1/2
m=1/(1+√2)+1/(√2+√3)+1/(√3+√4)+...+1/(√2011+2012)
=(-1+√2)+(-√2+√3)+……+(-√2011+√2012)
=-1+√2012
n=1-2+3-4+5-6+..+2011-2012
=(1-2)+(3-4)+(5-6)+..+(2011-2012)
=(-1)*1006=-1006
所以n/(m+1)^2=-1006/2012=-1/2