f(x)为偶函数的充分必要条件是:f(x)=f(-x)
所以f(x)=sin(x+α)+cos(x-α)=f(-x)=sin(-x+α)+cos(-x-α),
又sin(-x)=-sin x,cos(-x)=cosx
所以sin(x+α)+cos(α-x)=sin(α-x)+cos(x+α)
展开化简得 cos α=-sin α
即tan α=-1
f(x)为偶函数的充分必要条件是:f(x)=f(-x)
所以f(x)=sin(x+α)+cos(x-α)=f(-x)=sin(-x+α)+cos(-x-α),
又sin(-x)=-sin x,cos(-x)=cosx
所以sin(x+α)+cos(α-x)=sin(α-x)+cos(x+α)
展开化简得 cos α=-sin α
即tan α=-1