(a+c+b)(a+c-b)=ac
(a+c)²-b²=ac
a²+c²-b²=-ac
cosB=(a²+c²-b²)/(2ac)=-1/2,B=120°.
sinAsinC= (√3-1)/4
sin(60°-C)sinC=(√3-1)/4.
√3cosCsinC/2-sin²C/2=(√3-1)/4
√3sin(2C)/4-[1-cos(2c)]/4=(√3-1)/4
sin(2C+30°)=√3/2
C=15°或45°.
(a+c+b)(a+c-b)=ac
(a+c)²-b²=ac
a²+c²-b²=-ac
cosB=(a²+c²-b²)/(2ac)=-1/2,B=120°.
sinAsinC= (√3-1)/4
sin(60°-C)sinC=(√3-1)/4.
√3cosCsinC/2-sin²C/2=(√3-1)/4
√3sin(2C)/4-[1-cos(2c)]/4=(√3-1)/4
sin(2C+30°)=√3/2
C=15°或45°.