sn=32n-n^2=33n-2*(n+1)n/2
=[33-2]+[33-4]+...+[33-2n]
∴an=33-2n
Tn=|a1|+|a2|+...|an|
=(|33-2|+|33-4|+...+|33-32|)+ (|33-34|+|33-36|+...+|2n-33|)
=1+3+...+31+...+(1+3+5+...+[2n-33])
=(1+31)*16/2+(1+2n-33)*(n-16)/2
=256+(n-16)(n-8)
sn=32n-n^2=33n-2*(n+1)n/2
=[33-2]+[33-4]+...+[33-2n]
∴an=33-2n
Tn=|a1|+|a2|+...|an|
=(|33-2|+|33-4|+...+|33-32|)+ (|33-34|+|33-36|+...+|2n-33|)
=1+3+...+31+...+(1+3+5+...+[2n-33])
=(1+31)*16/2+(1+2n-33)*(n-16)/2
=256+(n-16)(n-8)