1、
a1+2d = 10;
7(a1+a1+6d)/2 = 91
解得:a1= 4,d=3
an = 3n+1.
Tn = 2bn-2;
T(n-1)=2b(n-1)-2;
Tn-T(n-1) = 2bn-2b(n-1)=bn;
bn = 2b(n-1),b1=2;
bn = 2^n.
2、
去除的项为b1 b4 b7.b(3n-2)为公比=8的等比数列
其和为Bn = 2(8^n-1)/7
数列b1,b2.b(3n)中,有b1,b4,.b(3n-2)
则A(2n) = 2(8^n-1) - 2(8^n-1)/7 = 12(8^n-1)/7 ①
数列b1,b2.b(3n-1)中,有b1,b4,.b(3n-2)
故A(2n-1) = 5*(8^n-1)/7 - 1 ②
所以A(2n) = 12(8^n-1)/7
A(2n-1) = 5(8^n-1)/7 -1
3、
an = 3n+1
bm = 2^m
3n+1 = 2^m
当n=1,m=2时,等式成立,说明这样的n和m是存在的.
3n = 2^m-1
n = (2^m-1)/3 (m∈N+)