设菱形的两条对角线长度分别为x、y,则可知菱形面积
S = (xy)/2
由勾股定理可知:
(x/2)^2 + (y/2)^2 = (2p/4)^2
化简得:x^2 + y^2 = p^2
又因为:x + y = m
所以:
S = (xy)/2 = (1/2)*{[(x+y)^2 - (x^2 + y^2)]/2}
=(1/4)(m^2 - p^2)
设菱形的两条对角线长度分别为x、y,则可知菱形面积
S = (xy)/2
由勾股定理可知:
(x/2)^2 + (y/2)^2 = (2p/4)^2
化简得:x^2 + y^2 = p^2
又因为:x + y = m
所以:
S = (xy)/2 = (1/2)*{[(x+y)^2 - (x^2 + y^2)]/2}
=(1/4)(m^2 - p^2)