根据余弦定理:
2abcosC=a^+b^-c^2=a^2+2ab+b^2-c^2-2ab=(a+b)^2-c^2-2ab=(a+b+c)(a+b-c)-2ab
由:
(a+b+c)(a+b-c)=4/3ab
2abcosC=4/3ab-2ab=-2/3ab;
cosC=-1/3;
tanC^2=sinC^2/cosC^2=(1-cosC^2)/cosC^2=(8/9)/(1/9)=8;
tanC=-2√2;正的舍去
根据余弦定理:
2abcosC=a^+b^-c^2=a^2+2ab+b^2-c^2-2ab=(a+b)^2-c^2-2ab=(a+b+c)(a+b-c)-2ab
由:
(a+b+c)(a+b-c)=4/3ab
2abcosC=4/3ab-2ab=-2/3ab;
cosC=-1/3;
tanC^2=sinC^2/cosC^2=(1-cosC^2)/cosC^2=(8/9)/(1/9)=8;
tanC=-2√2;正的舍去