连接AC交BD于点O,连接A1O,OM,A1M
∵A1B=A1O,BM=DM,且点O为BD的中点,∴A1O⊥BD,OM⊥BD,∴∠A1OM即为所求角
设正方形边长为a,则AO=√2/2 a,∴A1O=√3/√2 a,
∵OC=√2/2 a,MC=a/2 ∴OM=√3/2 a,∵A1C1=√2a,C1M=a/2,∴A1M=3/2
△A1OC1,由余弦定理得cos∠A1OM=(A1O²+OM²-A1M²) /(2A1O*OM)=0
即所求角的余弦值为0.
连接AC交BD于点O,连接A1O,OM,A1M
∵A1B=A1O,BM=DM,且点O为BD的中点,∴A1O⊥BD,OM⊥BD,∴∠A1OM即为所求角
设正方形边长为a,则AO=√2/2 a,∴A1O=√3/√2 a,
∵OC=√2/2 a,MC=a/2 ∴OM=√3/2 a,∵A1C1=√2a,C1M=a/2,∴A1M=3/2
△A1OC1,由余弦定理得cos∠A1OM=(A1O²+OM²-A1M²) /(2A1O*OM)=0
即所求角的余弦值为0.