设f(x)在x=0处可导,且f(0)=0,则limx趋于0f(x)/x=?
1个回答
limf(x)/x=lim[f(x)-f(0)]/(x-0)=f'(0)
这是导数的定义式.
相关问题
函数f(x)在x0处可导且limx趋于0 f(x0+3x)-f(x0-x)/3x=1 f'(x)=
f(x)在x=0处可导,且f(0)=0,则lim[f(x)/2x]=?x趋于0
设函数f(x)在x=0点可导,且f(0)=0,f‘(0)=1,则limx—0 f(x)/x=?
证明,设函数f(x)在(x0,+∞)内二阶可导,且limx->x0 f(x)=0,limx->+∞ f(x)=0,则在区
设f(x)在x=0处连续,且lim(x趋于0)f(x)/x存在,证明,f(x)在x=0处可导
已知f(x)在x=0处可导,且f(0)=0,则limx→0x2f(x)−2f(x3)x3=( )
已知f(x)在x=0处可导,且f(0)=0,则limx→0x2f(x)−2f(x3)x3=( )
设f(x)可导,且f(0)=0,证明F(X)=f(x)(1+/SINX/)在x=0处可导
设函数f(x)在x=0处可导,且f(0)=0,则lim(△x→0)[f(5x)]/x=?
设f(x)二阶可导,且f(0)=0,f′(0)=1,f″(0)=2,则limx→0f(x)−xx2=______.