高数第二题

1个回答

  • 令arctanx=t,则x=tant,dx=sec²tdt

    ∫xe^arctanx/(1+x^2)^3/2dx

    =∫tante^t/(1+tan^2;t)^3/2*sec²tdt

    =∫tante^t/sec ³t sec ²tdt

    =∫tante^t/sectdt

    =∫sinte^tdt (1)

    =-∫e^tdcost

    =-coste^t+∫coste^tdt

    =-coste^t+sinte^t-∫sinte^tdt (2)

    由 (1)(2)得

    ∫sinte^tdt =1/2( sinte^t-coste^t ) +C

    =1/2( sint-cost)e^t +C

    =1/2cost(tant-1)e^t +C

    =1/2*1/√(tan²t+1)*(tant-1)e^t +C

    =1/2*1/√(x²+1)*(x-1)e^arctanx+C

    =√(x²+1)*(x-1)e^arctanx/(x²+1)+C