由正弦定理知[a/sinA]=[b/sinB]=[c/sinC]=2R,
∴sinA=[a/2R],sinB=[b/2R],sinC=[c/2R],
∵sinA:sinB:sinC=3:5:7,
∴a:b:c=3:5:7,则c边最大,即C为最大角.
设a=3t,b=5t,c=7t,
∴cosC=
a2+b2−c2
2ab=
9t2+25t2−49t2
2•3t•5t=-[1/2],
∵0<C<π,
∴C=[2π/3].
故答案为:[2π/3].
由正弦定理知[a/sinA]=[b/sinB]=[c/sinC]=2R,
∴sinA=[a/2R],sinB=[b/2R],sinC=[c/2R],
∵sinA:sinB:sinC=3:5:7,
∴a:b:c=3:5:7,则c边最大,即C为最大角.
设a=3t,b=5t,c=7t,
∴cosC=
a2+b2−c2
2ab=
9t2+25t2−49t2
2•3t•5t=-[1/2],
∵0<C<π,
∴C=[2π/3].
故答案为:[2π/3].