求等差、等比数列的前n项和公式,以及三角涵数常用的变换公式

1个回答

  • 等差:Sn=n(a1+an)/2,Sn=na1+n(n-1)d/2

    等比:Sn=a1(1-q^n)/(1-q),Sn=(a1-anq)/(1-q)注意q不=1

    三角:

    1.基本关系:(sinx)^2+(cosx)^2=1,tanx=sinx/cosx,secx=1/cosx,cscx=1/sinx,(secx)^2=1+(tanx)^2,(cscx)^2=1+(cotx)^2

    2.二倍交公式:sin2x=2sinx*cosx,变形:sinx*cosx=sin2x/2

    1+sinx=(sin(x/2))^2+(cos(x/2))^2+2sin(x/2)cos(x/2)=[sin(x/2)+sin(x/2)]^2

    1-sinx=(sin(x/2))^2+(cos(x/2))^2-2sin(x/2)cos(x/2)=[sin(x/2)-sin(x/2)]^2

    cos2x=(cosx)^2-(sinx)^2

    =2(cosx)^2-1,变形:(cosx)^2=(1+cos2x)/2

    =1-2(sinx)^2,变形:(sinx)^2=(1-cos2x)/2

    tan2x=2tanx/(1-(tanx)^2)

    3.两角和与差公式:sin(x+y)=sinxcosy+sinycosx,sin(x-y)=sinxcosy-sinycosx

    cos(x+y)=cosxcosy-sinxsiny,cos(x-y)=cosxcosy+sinxsiny

    tan(x+y)=(tanx+tany)/(1-tanxtany),变形:tanx+tany=tan(x+y)(1-tanxtany)

    tan(x-y)=(tanx-tany)/(1+tanxtany),变形:tanx-tany=tan(x-y)(1+tanxtany)

    4.万能公式:sin2x=2tanx/(1+(tanx)^2),

    cos2x=(1-(tanx)^2)/(1+(tanx)^2)