(1)S 1=a 1=
1
2 ,∴
1
S 1 =2
当n≥2时,a n=S n-S n-1=-2S nS n-1,∴
1
S n -
1
S n-1 =2
∴ {
1
S n } 为等差数列,首项为2,公差为2…(4分)
(2)由(1)知
1
S n =2+(n-1)×2=2n,∴ S n =
1
2n …(6分)
当n≥2时, a n =-2 S n S n-1 =-2•
1
2n •
1
2(n-1) =-
1
2n(n-1)
∴ a n =
1
2 n=1
-
1
2n(n-1) n≥2,n∈N …(9分)
(3) S 1 2 +…+ S n 2 =
1
4 (
1
1 2 +
1
2 2 +…+
1
n 2 )≤
1
4 (1+
1
1×2 +
1
2×3 +…+
1
(n-1)×n ) =
1
4 (1+1-
1
2 +…+
1
n-1 -
1
n ) =
1
4 (2-
1
n )=
1
2 -
1
4n …(13分)