sin^2A+sin^2C-sinAsinC=sin^2B
由正玄定理原式转换为
a^2+c^2-ac=b^2
由余弦定理得
cosB=(a^2+c^2-b^2)/(2ac)=[a^2+c^2-(a^2+c^2-ac)]/(2ac)
=ac/(2ac)=1/2
B=60°
sin^2A+sin^2C-sinAsinC=sin^2B
由正玄定理原式转换为
a^2+c^2-ac=b^2
由余弦定理得
cosB=(a^2+c^2-b^2)/(2ac)=[a^2+c^2-(a^2+c^2-ac)]/(2ac)
=ac/(2ac)=1/2
B=60°