思路是这样的
作OM⊥CD于点M,连接OD,在直角三角形OPM中,根据三角函数求得OM的长,然后在直角△ODM中,利用勾股定理即可求得DM的长,进而求得CD的长
具体
作OM⊥CD于点M,则DM=1/2CD
∵AP=1,BP=5,
∴OD=1/2AB=AP+BP/2=3
∴OP=OA-PO=3-1=2,
∵Rt△OMP中,∠APC=∠BPD=30°,
∴OM=1/2OP=1/2×2=1,
在Rt△OMP中,
∵OD2=OM2+DM2,即32=12+DM2,解得DM=2倍根号2
∴CD=2DM=2×2倍根号2=4倍根号2
打的半天了,纯手打,祝您学习愉快