解题思路:要想判断一个数列有无最大项,可以判断数列的单调性,如果数列的前n项是递增的,从n+1项开始是递减的,则an(an+1)即为数列的最大项,故我们可以判断构造an+1-an的表达式,然后进行分类讨论,给出最终的结论.
∵an+1-an=(n+2)([10/11])n+1-(n+1)([10/11])n
=([10/11])n•[9−n/11],
∴当n<9时,an+1-an>0,即an+1>an;
当n=9时,an+1-an=0,即an+1=an;
当n>9时,an+1-an<0,即an+1<an;
故a1<a2<a3<<a9=a10>a11>a12>….
∴数列{an}有最大项a9或a10,
其值为10•([10/11])9,其项数为9或10.
点评:
本题考点: 数列的函数特性.
考点点评: 判断数列的最大(小)项,即判断an+1-an的符号在何处变号,若n<K时,an+1-an>0成立,n≥K时,an+1-an<0成立,则aK即为数列中的最小项;
若n<K时,an+1-an<0成立,n≥K时,an+1-an>0成立,则aK即为数列中的最大项.