解题思路:根据角平分线上的点到角两边的距离相等得出DE=DF,根据题意还知道∠DEB=∠DFC,BD=CD,从而得出△DEB≌△DFC,进而得出∠B=∠C,即可得出结论AB=AC.
∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,
根据角平分线上的点到角两边的距离相等得出DE=DF,
又∵BD=CD,∠DEB=∠DFC=90°,
∴Rt△DEB≌Rt△DFC,
∴∠B=∠C,
∴AB=AC.
点评:
本题考点: 等腰三角形的判定;全等三角形的判定与性质;角平分线的性质.
考点点评: 本题主要考查了角平分线上的点到角两边的距离相等、全等三角形的证明及性质、等腰三角形的性质,比较综合,难度适中.