求极限lim(x→0)∫(x,0)(xcost^2dx)/x

1个回答

  • 说明:此题是打错了!我想应该是:求极限lim(x→0)∫(x,0)(tcost^2dt)/x.

    若是这样,解法如下.

    解法一:原式=lim(x→0)[xcos(x²)] (0/0型,应用罗比达法则)

    =0*1

    =0;

    解法二:原式=lim(x→0){[1/2∫(x,0)cos(t²)d(t²)]/x}

    =lim(x→0){[sin(x²)/2]/x}

    =lim(x→0){[(x/2)*[sin(x²)/(x²)]}

    =lim(x→0){[(x/2)*lim(x→0)[sin(x²)/(x²)]

    =0*1 (应用重要极限lim(x→0)(sinx/x)=1)

    =0.