在三角形ABC中,∠BAC=90度,AB=AC=2倍根号2,点D是直线BC上一点,BD=1,将射线AD

2个回答

  • ∵∠BAC=90度,AB=AC=2倍根号2,

    ∴BC=√(AB²+AC²)=√(8+8)=4

    ∠B=∠C=45°

    ∴在△ABD中,余弦定理:

    AD²=AB²+BD²-2AB×BD×cos45°=8+1-2×2√2×1×√2/2=5

    AD=√5

    ∴正弦定理

    BD/sin∠BAD=AD/sin45°

    sin∠BAD=BD×sin45°/AD=(1×√2/2)/√5=√10/10

    ∴cos∠BAD=3√10/10(利用sin²∠BAD+cos²∠BAD=1)

    ∴sin∠BAE

    =sin(∠BAD+45°)

    =sin∠BADcos45°+cos∠BADsin45°

    =√10/10×√2/2+3√10/10×√2/2

    =2√5/5

    ∴cos∠BAE=√5/5

    ∵∠ADE=∠B+∠BAD=45°+∠BAD=∠BAD+∠DAE=∠BAE

    ∴sin∠ADE=2√5/5,cos∠ADE=√5/5

    ∴sin∠AED

    =sin(180°-45°-∠ADE)

    =sin135°cos∠ADE-cos135°sin∠ADE

    =√2/2×√5/5+√2/2×2√5/5

    =√10/10+2√10/10

    =3√10/10

    ∴在△ADE中,正弦定理

    DE/sin45°=AD/sin∠AED

    DE=AD×sin45°/sin∠AED

    =(√5×√2/2)/(3√10/10)

    =5/3