∵m*n=sinB,!m!=2!sinB!.!n!=1 ∴m*n=!m!n!cos60 即sinB=2!sinB!/2 ∴sinB=1. ∴B=2Kπ+π/2.k去整数.
B=60°+2kπ 为三角形内角 则B=60°
A+C=120°
sinA+sinC
=sinA+sin(2π/3-A)
=sinA+ √3/2cosA +1/2sinA
=3/2sinA+√3/2cosA
=√3sin(30+A)
A∈(0,120)
√3sin(30+A)∈(√3/2,√3)
∵m*n=sinB,!m!=2!sinB!.!n!=1 ∴m*n=!m!n!cos60 即sinB=2!sinB!/2 ∴sinB=1. ∴B=2Kπ+π/2.k去整数.
B=60°+2kπ 为三角形内角 则B=60°
A+C=120°
sinA+sinC
=sinA+sin(2π/3-A)
=sinA+ √3/2cosA +1/2sinA
=3/2sinA+√3/2cosA
=√3sin(30+A)
A∈(0,120)
√3sin(30+A)∈(√3/2,√3)