设正方形的边长为4a,
∵E是BC的中点, CF=1/4CD,
∴CF=a,DF=3a,CE=BE=2a.
由勾股定理得:AF²=AD.
由勾股定理得:AF2=AD²+DF²=16a²+9a²=25a²,EF²=CE²+CF²=4A²+a²=5a²,AE²=AB²+BE²=16a²+4a²=20a²,
∴AF²=EF²+AE²,
∴△AEF为直角三角形
这个证明就是对的啊
不懂可以追问
希望采纳谢谢
设正方形的边长为4a,
∵E是BC的中点, CF=1/4CD,
∴CF=a,DF=3a,CE=BE=2a.
由勾股定理得:AF²=AD.
由勾股定理得:AF2=AD²+DF²=16a²+9a²=25a²,EF²=CE²+CF²=4A²+a²=5a²,AE²=AB²+BE²=16a²+4a²=20a²,
∴AF²=EF²+AE²,
∴△AEF为直角三角形
这个证明就是对的啊
不懂可以追问
希望采纳谢谢