∵∠ABC=∠ABP=45°,∴∠ABC与∠ABP是对应角.
BC=3√2,AB=2,AC=√13,PB=√2,
设Q(m,0),则BQ=3-m,
①ΔABC∽ΔQBP,则AB/BC=QB/PB,得2/3√2=(3-m)/√2,m=7/3,Q(7/3,0);
②ΔABC∽ΔPBQ,则AB/BC=PB/BQ,得2/3√2=√2/(3-m),m=0,Q(0,0);
综上所述:Q(7/3,0)或(0,0).
∵∠ABC=∠ABP=45°,∴∠ABC与∠ABP是对应角.
BC=3√2,AB=2,AC=√13,PB=√2,
设Q(m,0),则BQ=3-m,
①ΔABC∽ΔQBP,则AB/BC=QB/PB,得2/3√2=(3-m)/√2,m=7/3,Q(7/3,0);
②ΔABC∽ΔPBQ,则AB/BC=PB/BQ,得2/3√2=√2/(3-m),m=0,Q(0,0);
综上所述:Q(7/3,0)或(0,0).