设棱长为a=2的正四棱锥A-BCDE与正三棱锥A-CDF,取AC中点G,连BG,DG,FG.易知AC⊥BG,AC⊥DG,AC⊥FG,
∴∠BGD、∠DGF分别是二面角B-AC-D、D-AC-F的平面角.
BG=DG=FG=√3.BD=2√2.
cosBGD=(BG^2+DG^2-BD^2)/(2BG*DG)=-1/3,
cosDGF=(DG^2+FG^2-DF^2)/(2DG*FG)=1/3.
∴∠BGD+∠DGF=180°,
∴A,B,C,F四点共面;
同理,A,E,D,F四点共面.
∴多面体ABCDEF是五面体.