∵f(x)=e^x*(cosx-sinx)
∴f'(x)=(e^x)'(cosx-sinx)+e^x(cosx-sinx)'
=e^x(cosx-sinx)+e^x(-sinx-cosx)
=e^xcosx-e^xsinx-e^xsinx-e^xcosx
=-2e^xsinx
∵f(x)=e^x*(cosx-sinx)
∴f'(x)=(e^x)'(cosx-sinx)+e^x(cosx-sinx)'
=e^x(cosx-sinx)+e^x(-sinx-cosx)
=e^xcosx-e^xsinx-e^xsinx-e^xcosx
=-2e^xsinx